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ON THE THEORY OF LAMINAR BOUNDARY LAYERS INVOLVING SEPARATION

By Tr. von K{rMAN and C. B. MiLLIEAN

SUMMARY

The paper presents a mathematical discussion of the
laminar boundary layer, which was developed with @ view
of facilitating the investigation of those boundary layers
in particular for which the phenomenon of separation
occurs. The treatment starts with a slight modification of
the form of the boundary layer equation first published by
von Mises. Two approximate solutions of this equation
are found, one of which is exact at the outer edge of the
boundary layer while the other is exact at the wall. The
Jinal solution is obtained by joining these two solutions
at the inflection points of the velocity profiles. The final
solution is given in terms of a series of universal functions
Jor a fairly broad class of potential velocity distributions
outside of the boundary layer. Detailed calculations of
the boundary layer characteristics are worked out for the
case in which the potential velocity is a linear function of
the distance from the upstream stagnation point. Finally
the complete separation point characteristics are deter-
mined for the boundary layer associated with a potential
velocity distribution made up of two linear functions of
the distance from the stagnation point. I appears that
extensions of the detailed calculations to more complex
potential flows can be fairly easily carried out by using
the explicit formulae given in the paper.

1. INTRODUCTION

The theory of the laminar boundary layer has two
important applications: First, the computation of skin
friction in the range of low Reynolds Numbers; second,
the explanation of the separation phenomena. Both
problems require the calculation of the “development
of the boundary layer’” under the assumption of a
given pressure distribution along the wall. In some
simple cases, as in the case of constant pressure and in
that of a pressure decreasing proportionally to a given
power of the length measured along the wall, the partial
differential equation of the boundary layer theory can
be reduced to a total equation and integrated without
difficulty. In these cases all “cross sections” of the
boundary layer show “similar velocity profiles” and
essentially only the scale of the velocity and the length-
scale over the cross sections, i.e., the ‘“thickness of the
boundary layer” are variable. However, in general,

especially in the case in which the pressure is increasing
along the wall, the distortion in the shape of the veloc-
ity profile is the very point of interest. In these cases
the solution of the partial differential equation itself is
necessary. Unfortunately, all methods indicated until
the present involve such an amount of numerical work
as to discourage any engineer anxious to use the theory
for solution of practical problems.

K. Pohlhausen (reference 1), at the suggestion of the
first author, tried to reduce the boundary layer prob-
lem to the solution of a total differential equation in the
following way: He chooses a certain family of plausible
“velocity profiles” with variable shape in such way
that the influence of the rate of change of the pressure
along the wall is taken into account by s boundary
condition, but one parameter (for instance, the *“thick-
ness” of the boundary layer) is left undetermined.
Then he applies the momentum law to a strip of the
boundary layer enclosed between two adjacent cross
sections using the integral relation introduced by the
first author. This relation leads to a total differential
equation for the undetermined parameter and by
integration of this equation the “development of the
boundary layer” is obtained.

This method has been criticized especially by von
Mises (reference 2), who pointed out that the results
depend greatly on the choice of the family of velocity
profiles. This is true to some extent, in spite of the
fact that in the simple cases mentioned above plausibly
chosen velocity profiles lead to close agreemént with
the exact solutior both for the value of the skin
friction and the thickness of the boundary layer.
Furthermore, the fact that the method can be applied
to the case of the turbulent layer, in which we ignore
the partial differential equations of the motion, but
know the approximate shape of the velocity profile,
has to be considered as a great advantage of the
method. As a matter of fact, all more or less successful
developments in the theory of the turbulent boundary
layer are based on the Karm#n-Pohlhausen procedure.

However, in the case of the laminar boundary layer,
the equations of the motion are known and the diffi-
culties are merely mathematical. Thus a method which
contains less arbitrary assumptions than the Pohl-
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hausen procedure and involves less numerical calcula-
tions, than the methods used by Hiemenz, Boltze,
Thom, Green (reference 3), etc., would represent a
desirable improvement of the situation.

The authors became interested in the solution of the
boundary-layer equation in connection with their in-
vestigations concerning the maximum lift (stalling
point) of airfoils. It is generally known that stalling
is due to the separation of the boundary layer at the
upper surface of an airfoil, but in general it is assumed
that the boundary layer is turbulent, except in the
immediate neighborhood of the stagnation point, over
the range of high Reynolds Numbers corresponding to
actual flicht or usual wind-tunnel test conditions.
Recent investigations in the 10-foot diameter wind
tunnel of the Guggenheim Aeronautics Laboratory at
the Californis Institute of Technology have revealed a
systematic and very considerable influence of the
amount of turbulence in the wind stream on the value
of the maximum lift (reference 4). This influence could
be correlated very exactly with the influence of the
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FIGURE 1.—Fluid el 1t in the b dary layer.

turbulence on the so-called “critical” Reynolds Number
of a sphere (Reynolds Number characteristic for the
sudden drop of the drag coefficient). As L. Prandtl
(reference 5) pointed out, the influence of turbulence
on the latter phenomenon is due to the fact that the
regime in the boundary layer changes earlier from
the laminar to the turbulent state, if the turbulence of
the wind stream is increased. The authors concluded
that a similar process might explain the influence of
turbulence on the stalling of airfoils. The conception
may be stated as follows: The low values of lift maxima
in quiet air streams are due to the separation of the
laminar boundary layer, while in a turbulent stream
the regime changes before separation occurs and so the
lift maximum is raised. For the investigation of such
an hypothesis, the calculation of the development of
the laminar boundary layer from the stagnation poiné
up to the separation point appeared as a necessity.
This paper presents the method suggested by the
authors for the computation of the development of a
boundary layer, especially suitable for the case of in-
creasing pressure involving separation. As will be
seen, the fundamental equation of motion is used in the
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form given by von Mises in his paper (reference 2)
with a slight modification. This modification furnishes
the possibility that the solution of an equation identical
with that of ordinary heat conduetion, furnishes a
first approximation for the velocity field in the region
away from the wall. In addition, the shape of the
velocity profile near the wall is calculated from the
given pressure distribution along the wall. The joining
of these two solutions is carried out in a rather rough
way, at least from a mathematical point of view. The
authors hope that experts in applied mathematics will
accomplish the task of improving their somewhat
rudimentary procedure.

2. THE FUNDAMENTAL EQUATION IN THE THEORY OF
THE BOUNDARY LAYER

All of the following investigations are restricted to
the case of 2-dimensional stationary motion. We
use a8 system of curvilinear coordinates. The lines
Y=constant represent stream lines, so that the value
of the parameter ¢ gives the amount of fluid flowing
through between the wall (¢=0) and the particular
stream line corresponding to the value of ¥ considered.
A system of curves perpendicular to the stream lines
will be called the n-curves; the length measured along
the y-curves may be denoted by s, the curvature of
the stream lines by %y, that of the n-curves by %,.

We introduce the following notation:

w4 is the magnitude of the velocity, the
direction of the velocity being given
by the direction of the stream lines.

p is the pressure.

o5, 0y, T aTE Viscous stresses acting on seclions

normal and parallel to the stream
lines (as shown in fig. 1).

p is density of the fluid.

v is kinematic viscosity of the fluid=u/p.

Let us consider the equation of momentum applied
to the component of the momentum in the direction
of the stream lines:

Q [u? 1/0¢; , Or ‘
Py 5+%)=; 3% +-a—n—k¢‘r+]c,,a,,>'
In this equation O/0n denotes the differential quotient
along the n-curves, where the letter n is used for the
length measured along the n-curves.

Let us consider the components of the viscous stress
sy 0ny 7. 'The normal stresses ¢, and ¢, are propor-
tional to the rate of extension of the volume element in
the s and n directions, the shearing stress is propor-
tional to the rate of shear. We write

ou
os=2pu s
on=—2uk 1t

T= U <%~Z+ k.p’llz)
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Now the theory of the boundary layer is based on
two fundamental assumptions:

(a) that inside of the boundary layer the differ-
ential quotients perpendicular to the direction of

flow increase proportionally to w/i;’ as the kinematic

viscosity » tends to zero, while the differential quo-
tients in the direction of the flow remain finite.

(b) that the curvature of the stream lines ky remains
finite if »—0.

According to these assumptions we can neglect the
terms containing ¢, and ¢, in comparison with the
terms containing 7, we can neglect kyr in comparison

with —277;; and finally we can replace 7 byu g_'u,

Hence we obtain the relatively simple equation

'uF p)_y o™y (1)'

In this equation p appears as variable both along
the stream lines and the n-curves. Following Prandtl’s
method, we should investigate the variation of 2
in the direction perpendicular to the flow by con-
sidering the equation of momentum applied to the
component taken in that direction. According to
the assumptions (@) and (b), we easily obtain the
result that the variation of p perpendicular to the
streamlines is of the order of 4/». Hence in equation
(1) we replace p by its value p, corresponding to
n=oo, i, e., outside of the boundary layer. In this
way p appears as a given function of s.

We may now consider somewhat more exactly the
meaning of the two coordinates s and 7 used in equa-
tion (1). s was defined as the length measured along
the stream lines. However, it is obvious that with
the approximation used in this theory we can use s as
the length measured along the wall, and » the length
measured along the normal curves (perpendicular to
the stream lines) or along a straight line perpendicular
to the wall. The approximation used in the theory
does not permit of a discrimination between such
different definitions of the ‘‘cross section of the
boundary layer’ (reference 2).

We therefore replace the coordinates s and n by two
parameters ¢ and ¢ chosen in the following way:

(@) Every boundary layer calculation starts from a
given “outside flow’’ in which the influence of viscosity
can be neglected, the influence of viscosity being
restricted to the boundary layer itself. The velocity
of the outside flow at the wall shall be given by TU(s).
We introduce the parameter ¢ by the relation

= J;s U(s)ds, i.e. ¢ is the line integral of the “outside

velocity” along the wall. If the outside motion is a
potential motion, ¢ is simply the value of the potentiai

along the wall. Obviously we have to wrlte U
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() We replace n by the parameter ¢ as defined

) ., O
above and write = uw

0%y
Let us calculate vy

dw_d/ duw\__ D ('11?)
2o\ Yoy ) Yo\ == | T Vo

Hence we write equation (1) in the following form:

op(z)

Now in the “outside flow” the Bernoulli equation
2
holds, so that i(&+E)= 0 and we obtain:
de\ p 2

Uaso 2 oL mw(ﬁ)

or taking into account the fact that U is a function
only of ¢ and independent of ¢

E_Uf_ﬁ 21_—%6)
IR 2

1dp,_
( + Up de

2
%~z the ““energy defect.”

We call the quantity v 2_

It can be interpreted as the loss of energy of a fluid
particle of unit mass flowing along a particular stream
line as compared with the energy of a particle outside
of the boundary layer. Introducing z in the last
equation, we obtain

e @)

We notice that this equation is nearly identical with
the equation given by von Mises (reference 2). The
difference lies essentially in the use of the parameter
o instead of the length s. It will be shown below that
this modification facilitates the practical use of the
equation.

First it is obvious that the use of ¢ instead of s does
not introduce any complication in the set-up of the
problem, because in most cases equally simple expres-

sions are available for the functional rela,tionsg-2 =1f(yp)

2
and for U=g(s). Second, it is easy to give to equation

(2) the following interpretation: In the system ¢, ¢,

—_ny2
the energy defect z= U22 L obeys an equation: analo-

gous to the equation of heat conduection. The only
coefficient appearing in the equation is the quantity

v %: i.e., the kinematic viscosity reduced in the ratio

%, which is the ratio between the local velocity inside

the boundarylayer and the outside velocity at the same
cross section.
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Neglecting first the influence of the ‘“‘reduction fac-
tor”%: i.e., replacing » % by v, we obtain a first approx-
imation for the solution of the fundamental equation
(2). Because the approximation is most accurate in
the outside portion of the boundary layer, where %}

is nearly equal to unity, we will refer to this solution
as the “outside solution” and denote it with z,. It
has the great advantage that it can be obtained by
using the well-known methods for integration of the
heat-conduction equation.

3. DIMENSIONLESS FORM FOR THE FUNDAMENTAL
EQUATION

Before proceeding to the calculation of this first
approximation, a dimensionless form will be given for

“the fundamental equation (2).

We introduce the following notation:
U, is a suitably chosen characteristic velocity
involved in the problem.
L is a suitably chosen characteristic length
involved in the problem.
R= —U,;LL is the corresponding Reynolds Number.
Then o*, ¥*, u*, U* z*, shall denote dimensionless
quantities defined by the following notation:

s_ @
¢ TTL
oo AR
U,L
°
u*=ﬁo 3)
xo U
U =T
z¥= 502

Substituting these values in equation (2), we obtain

2z% 1 u* oz

¥ 4 U* oy™

*
where % can be expressed by z* in the following form:

u* o 2z%
e
For convenience, we omit the stars in the succeeding
analysis, so that the simple letters denote dimension-
less quantities. The same letters are therefore used
in the future in a different sense from that in which

they were used in the previous sections.
The final equations can now be written:

0z lu 0%z
3 LU @

and
2
E=‘/]___zi (5)

It is necessary to indicate the boundary conditions
for the equation (4). Obviously the value ¥ =0 corre-

sponds to the wall and ¢y = to the transition to the
2

outside flow. Therefore, =0, or z=—g—=zo (say)

for y=0 and z=0 for y=w. It is found convenient

2
in the future to use z, and %— interchangeably.

4. GENERAL EQUATIONS FOR THE FIRST
APPROXIMATION

(OUTSIDE SOLUTION)
Let us consider the equation

9z¢_ 1%
a(p "'4 31//2 (G)

which we obtain from (4) replacing z by 1, or neglect-

ing —U-ZE in (5) in comparison with 1, and writing z= z,.
This approximation cannot in general hold near the
wall, where -Z27z2 approaches the value 1. However, it

is not without interest to discuss this simple approxi-
mate solution, which we shall later use for the outside
part of the boundary layer.

Considering z as ‘‘temperature’’, and replacing ¢ by
the time ¢, ¢ by a reduced length-coordinate z, the
following analogous heat-conduction problem can be
formulated: The temperature at the end point =0
of a bar of infinite length is a given function of the
time ¢ beginning at t=0. At infinite distance (x= )
the temperature is equal to zero. The temperature
distribution as a function of time and distance from
z=0 is to be computed.

For either heat conduction or boundary layer state-
ment of the problem, we have to find the solution of
(6), which satisfies the boundary conditions 2,=0

2
for ¢=c and z,,=z0=U—2(¢)- for ¢y =0. This solution
is given by the definite integral
\LZ

v (¢ e +—%

Zu=2_\/;-r 0 (‘P_E 3/2U2(£)df (7)

which is given in any text on the theory of heat conduc-
tion. Hence with this approximation the velocity
distribution in the boundary layer can be computed by
quadratures, as U? is a given function of the outside
potential ¢.

It is interesting that a relatively simple explicit
condition can be found for the location of the separa-
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tion point. Separation occurs if the slope of the
velocity at the wall changes sign. Thus the condition
——0 for

oy

for separation can be written in the form

¢=0. We obtain by differentiation

esoE

az&) 1 v e P E
oY 2w/7rj;) (p— ’é)mU (Hdé— 1/_[ (o— ;,;)5/2U (9)de.

For ¢=0 the second term vanishes, and the first
term becomes indeterminate, but its value can be
determined by a partial integration. In this way we

obtain
dU

w/_f 1/<pdE d.

Thus the separation criterion is given as o=g,
where

Oz)
31// ¥=0

04U

oo dE .
F(‘Ps)=J; 1/;';jsdg“-o- 8)

Assuming ¢=0 as stagnation point (U=0) and
assuming positive values for U, we easily see that

separation can only occur after %g] changes sign, i.e.,

after the velocity U has reached a maximum value
and is decreasing.

We will find later that this separation condition is
not of great practical value, because as we approach
the separation point, the approximate solution becomes
very inexact near the wall.

5. THE VELOCITY PROFILE AND DIFFERENTIAL
EQUATION IN TERMS OF u=u (z, 3)

The differential equation (6) determines the energy

[ .
defect z= 5 as function of the parameters ¢

and ¢. TFor many applications, expressions for the
velocity profile are needed, i.e., one has to determine
the velocity « as function of the coordinates 2 and y,
where z is the distance of an arbitrary cross section
from the starting point of the boundary layer, and y
is the distance from the wall. Instead of the real
lengths 2 and y, dimensionless quantities z* and y*

may be defined in terms of the characteristic length I,
putting

v Y
'.’/*“L

:z;*=%
For convenience we use the letters z and y instead of
the letters =* and ¢*, as we did above for the other
quantities involved in this investigation. Then it is
obvious from the definitions given in equation (3)
that u, z, ¥ can be expressed by the formulas:
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—2z=

=), ), ®

229
Rl

z
1-=
2

~—

These formulas enable us to calculate the velocity
profiles corresponding to any given solution z(e, ¥).
It is interesting to transform the approximate equa-
tion (6) into an equation for u, containing z and y as
independent variables. Obviously the symbol 0/0¢
means In this case the rate of change of any quantity
with increasing = while keeping constant y, while 9/9¢
means differentiation by keeping ¢ invariable. There-
fore
o} ) +dy 0
do dx by

where g—z is the inclination of the line ¢=constant in

the z, y coordinate system. The inclination % can

be expressed by

_oy
T v
dy o
oy

where » is the (dimensionless) velocity in the y direc-
tion. We obtain in this way

dUlbubfu,

bzw bzw v 02¢
i} + V5 oy

Yo U + u oy
On the other hand,
_T20(ou\_—40%
1/— 'R 0Y\dy/ Ru oy?
(from (9)).

The equation (6} is therefore transformed into

Ry 2u_LU%u, U
oz Y3y " Ru OF dx

0'#2 b;b( oY,

+U

Calling the dimensional quantities u;, #, Ui, zi,

-and y; for the moment, we obtain

ou

' 2,
"3, Sgu

v Uy ay12

a0,
1 d:z:l

bul —
byl

e (10)

Comparing equation (10) with the ‘“‘exact” boundary

layer equation deduced first by L. Prandtl:
a’u;l aul a 'U']_ dUl
U bx1+v] byl ay Ul dml‘, (11)

we notice that equation (10) exaggerates the influence
of the term corresponding to the viscous friction,
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e 1 oMy . .U
multiplying the term » e with the ratio - We
1
especially notice that for y=0, i.e., at the Wall ©=0
and so — u g"ﬁ can only have finite value if —=0

Hence the solutlon of equation (6), called in tlus paper
the “outer solution”, is composed of velocity profiles

2,
with vanishing second differential quotients —g—y—qﬁ at the

wall. This is the reason that it cannot be expected
that S shape velocity profiles, such as occur in a flow
against increasing pressure before separation, will be
satisfactorily represented by the solution of the
approximate equation (6).

6. POWER SERIES EXPANSION OF U2 (¢)

The analytical evaluation of the integral in (7) for
an arbitrary function U2(yp) is in general difficult, if
not impossible. Numerical or graphical methods are
likewise of little use. We therefore adopt the pro-
cedure of approximating to the function U2(¢) by a
polynomial of the form

U(o) =iZObiso’ (12)
With such a function the indicated integrations can be
analytically carried out. In proceeding with the cal-
culations to this end, it is convenient first to transform

2o (¢, ¥) = bogo (%) + é} biot TZ;()) (,L—_?';I),—r, gr (1/—‘[:_0)

where

0@ =228

g (@)=— L ze=F + 2%, @)

=

(r—1)!

g (x)r.=.
g, (x)=1—7_£ e dg, and 01=1.
a

The universal functions g,(z) can very readily be
calculated using the standard tables of the probability
integral appearing in J,(z). Once determined they
are independent of the velocity function U(ep), pro-
vided only that the latter has the polynomial form
(12). Equation (14) therefore, in connection with
(9), gives the complete analytical solution for our
first approximation to the boundary layer problem
for any case in which the potential velocity is such
that U® may be expressed as a polynomial in ¢.

Substituting (12) in the separation criterion (8),
integrating term by term, and again applying succes-
sive partial integrations, it is very easy to show that
the separation criterion takes the form, where ¢ is the
value of ¢ at the separation point:
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the expression for z, in (7) by introducing a new
variable of integration defined by

gt
Vo—¢&

A little caleulation gives at once
w [ (-f)e
or introducing the pa,rt.lcular function U2 given in (12):

Ve

Expanding the term in parenthesis by the binomial
theorem and integrating term by term, we obtain:

J (1/_ ) + 226“0 ,Z) =) @ —i;) rt (%2> rJr(:/‘p‘;)

where

(13)

© ,—f2
J(x)= ;/2—;]; %;dﬁ, and 0/=1.

By repeated partial integrations J, where r is any in-
teger greater than zero, may be expressed in terms of
J,. Carrying out the partial integrations and col-

(27' 1),[( ) —:22 (_)k 22k+1 mxﬂc_*_zz(r_l)

lecting terms, we obtain, finally:

(14)

—1 220-1) 2r—

k=21 1/;xe + Jox) }_
Flo) =52 i bwit=0  (19)

Hence the determination of the separation point is
reduced to the solution of an algebraic equation with
given numerical coefficients.

7. DOUBLE POWER SERIES EXPANSION OF U2 (o)

In principle we can approximate with any desired
exactness to any practically important velocity func-
tion U?(¢) by a polynomial of the form (12). TFor
many important cases, however, such as, for example,
the potential velocity around an airfoil, the number of
terms required in the polynomial for a satisfactory

approximation becomes very large. Since the ex-
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pression for z, becomes rapidly more and more com-
plicated as the number of terms in the polynomial
increases, it follows that the solution of our problem
becomes very laborious and complex in such cases.
For this reason a solution has been investigated for the
case in which U?(p) is approximated by two distinct
polynomials of the form (12) instead of by one. This
solution, which is discussed in the present section, is
somewhat more complicated formally than is (14), but
is vastly simpler for carrying out actual calculations.

We approximate to U?(p) by two polynomials, one
of which we use for ¢=<¢, and one for p=¢;, where ¢,
is any fixed value of ¢, i.e.:

n
U(e) =file) = 2bw for o=¢

- (16)

U(e) =fale) = 2w for o=,
The procedure is indicated schematically in figure 2, in
which the solid line represents the U?(p) actually used.
We substitute (16) in the original integral for z,
change the variable of integration, expand, integrate
term by term, and perform successive partial integra-

tions just as in the analysis leading to (14). The
final result may be written in the form:
20(p, ¥) =z—2,* + 25*(0=01)
where
2y =2, of formula (14)
(17)

5220 r),,,,g,( ) OO

2g* is identical with z,* except b;—pB; and n—m.
0!=1 and g,(x) is as given in equation (14). If p=<<¢,
we use the simpler formula (14).

Proceeding as before, the separation ecriterion now

takes the form

Flo) = s b+

o " Pl —1)! 22124 —2r) |
+\/1" Z Gi—D1P~ ’)f\;ITr)']_?

Ps i=

(18)
o5 Soli T=
0!=1, the second sum is to be taken to the

larger of n or m, and b,=0 for i >n, 8;=0for i >m.

For many practically important cases it is sufficiently
aceurate to approximate to U?(p) by two power series
involving no terms of degree higher than 3 in o, i.e.,
by=bs=_o___ =By=By= e ___ =0. Insuch
cases the formula (17) can be written in the following
form, which is very convenient for purposes of
calculation:
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2o, ¥) = {bo(ho— ho*) + Bolo* + T *
- ')’2&01292* + 73901393*}
+o {bl(hl - hl*) + lslhl* +2v:0, (gl*

+02%) — 3130 (g:* + g:™) }
+ o*{ba(ha— ho*) + Bola® + 3 vz (g1 *
+2¢,%+g5%) }
+ *{bs(hs— hs*) + Bshs*}

(for o=¢1) ¢ (19)

where

7 _ (N e (¥
Y1=b:— By, gt—gi(@)’gi —gf<‘/¢_<pl)’
ho=go, ln=go+ g1, ha=go+2g1+ g, hs=go+ 31
+3g2F g5, ¥ =go*, *=go* +g1*, elc.
If o=@ put Bi=g1*=h*=

Before proceeding with the general case, it is inter-
esting to compare this approximation with the exact

UZ

———
———
—
—

() (¥

% "2

FIGURE 2.~Double power series representation of T2 (p).

solution given by Blasius for uniform external flow
along a flat plate.

8. APPLICATION TO BLASIUS’ CASE U=constant
For this simple case, we have in accordance with (16)
DP=bg, by=by= . ........=B=0,p=0
Hence from (19) and (14)

v
Zw(‘P:S”) =b0ho=bogo= g—o[l __.‘/%:;——rj;"/;e_ﬁz dﬁ]

If we take U= U,=the characteristic velocity used
in defining the Reynolds Number, then U has the
numerical value 1, i.e.:

zlod) =5 [1-% L % o dﬁ]

For convenience, we denote the probability integral
by P, i.e.:

P(x)= 1/— e dp
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Then from the basic equations (9), we have for the
dimensionless velocity and distance from the wall

)
y= 22 [T 88
VB Jo  +P(B)

We arbitrarily define the boundary layer thickness 6
as that value of y at which the velocity has 99.5 percent
of the value which it has in the outside potential flow,
ie.,

(20)

y=6~u=0.995 . (21)
From the tables of the probability integral P, we find
: 14
that this occurs for 4==1.8.
Ve

2o (+5_dp
Hence =—
VR Jo /P(B)
1.2
Oseenr
1.0 —

8 — b
U e // Second gpproximation
& A 4
4
A / --First gpproximation
4 a

0 / Z 3 4 5 6 7
A
b
F16UuRE 3.—Dimensionless velocity profiles for flow along a flat plate.

The evaluation of the integral in (20) has been carried

out analytically for 0=< 1%- = 0.1 using the standard
power series expansion:

2 2,2
P(x)':"v—; $—§‘+1—6+ ...... ).

For :/‘b—— = 0.1 the integration has been accomplished
¢

graphically with & Coradi integraph. Before present-
ing the results it will be convenient to introduce the
distance along the plate in a direction parallel to U
and measured from the leading edge, which is also
taken as the origin of ¢. In order to fix ideas, we
consider a plate whose total length in the direction
of U is taken as the characteristic length L which
occurs in the Reynolds Number. Then in order to
make our distance along the plate a dimensionless
variable, we divide it by L. This dimensionless dis-
tance we denote by z in accordance with customary
practice, so that 0<<a=<< 1. For the present case

o=Uz=z since U=1. Hence ¢ may be replaced
throughout by z.

The results for u=u(y) are given in figure 3 by the
curve labeled “first approximation”. The Blasius
profile is also plotted for comparison. The expression

for & from this first approximation is & =5—1'/——5-1§ vz,

while the usual Blasius value is § piastus = %_I% .

Here the dimensionless length & is, of course, also
defined in terms of the standard length L. The shear-
ing stress at the wall 7,, as obtained from (g_u> has

Y/ wall
the following expressions:

( _To_ - 0.282 [ 1o ___0.3&?_/
PU2 1st approx. '\/RID’ PU2 Blaslus '\/R(l}

It has been pointed out above that our first approxi-
mation corresponds to an exaggeration of the viscous
forces near the wall. The method of linearizing the
differential equation introduced by Oseen retains the
exact viscous terms but approximates to the inertia
terms. It is of some interest, therefore, to compare
the results given by the two methods. This is especi-
ally easy for the present case of flow without pressure
drop, since the Oseen method leads to an equation of
exactly the same nature as does our first approxima-
tion. The Oseen solution has, therefore, been worked
out and will be briefly discussed here.!

- We start with the dimensionless form of the Prandtl
equation which, for U=constant, becomes (cf. equa-
tion (11)):

ua—u+ v Su_ ng_u.

oz oy oyt

We then introduce the velocity defect u; defined by:
Ug=U—u

Substituting this in the Prandtl equation, the Oseen
method of linearizing is based on the neglect of all
second-degree terms in u, or ». Carrying out this
procedure, we obtain

ou _ 1

2z UR
i.e., a heat-conduction equation of exactly the type as
was deduced for our first approximation (6). The
boundary conditions are: u,=U=1 at y=0 and u;=0
at y=o. The solution corresponding to these bound-

ary conditions is obtainable at once in terms of the
probability integral as ‘

Up=1— UP(—@%)

or in terms of the original variable # (since U=1)

1 After the present paper was completed, the authors discovered that the Oseon
method results presented in the remainder of this section had been investigated
from a point of view rather different from theirs and presented in a paper by N. A.
V. Piercy and H. F. Winny “The Skin Friction of Flat Plates to Oseen’s Approx
imation?’, Proc. Roy. Soc. Lond., Series A, Volume 140 (1933), p. 513.
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%_p (w/_l? L).
U 2 =
This velocity profile has also been plotted in figure 3

and labeled “Oseen.” The boundary-layer thickness
defined as above is given by

4.0 :
00seen™= W—é '\/E’

while the velocity gradient at the wall can readily be
shown to be just twice that given by our first approxi-

mation, so that
( ) 0 564
Oseen iII

Comparing all of these results, we see that our first
approximation gives excellent agreement with the
Blasius exact solution as far as § is concerned, and a
fairly satisfactory agreement with respect to velocity
profile and wall shearing stress. The Oseen method
of linearizing the differential equation leads, in the
present case, to much greater errors in all of these
characteristics.

9. FURTHER APPROXIMATION TO THE OUTER
SOLUTION

In order to improve the accuracy of our solution, it
is natural to look for some method of successive approx-
imation or iteration starting with the first approximate
solution discussed above. Von Mises (rveference 2)
has suggested a method based essentially on successive
iterations in the ¢ direction. If we use subscripts 1
to denote our first approximation and subseripts 2 for
o second approximation, then in view of the form of
the exact equations (4), (5), von Mises suggests
essentially that we write

221 02 21

z2(e, z//)=—f \/ T oy de

This procedure has been investigated for the Blasius
case and found to lead fo inconsistencies with the
given boundary conditions of the problem. The diffi-
culties seemed to be basic ones, so that this method of
approximation was abandoned and the following alter-
native procedure was considered:

The exact differential equation may be written in
the form

Oz 10%_ 10%

“4op (‘/

Then the first approximation is obbamed by neglect-
ing the right side of the equation, i.e.:

1 %2,

The {ollowing second appromlamon immediately

suggests itself:
5 b2 1 b‘Z ) 2 g
2 192 13 (\/ 2= 1)=1i(e, 9), 5oy,

Do 4oy
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Then 2z, is the solution of a generalized, nonhomo-
geneous, heat-conduction equation, in which the right
side 1, is a given function of ¢, ¢. From any standard
work on mathematical analysis'), the formal solution
of this equation satisfying the given boundary con-
ditions can readily be found to be

1 [ 4 -
ST f ael
ﬁﬁ m ), e
TG )
ot | L
vo—£
Unfortunately, the authors have found the evalua-
tion of this integral form of solution too intractable
for the method to be useful for the case of any general
funetion U(p). Only in the Blasius case, where a
separation of variables is possible so that the partial
differential equation reduces to an ordinary differen-

(—n)?_
o—§

z:(e, ¥) =2u(0, ¥)

tial equation with independent variable %, has a
®

solution of this second approximation been calculated.
Since the method is not pursued further in the present
paper, the analysis leading to this solution is not
presented. The velocity profile so deduced is, how-
ever, included in figure 3, with the label “second
approximation”. The approximation to the exact
solution is seen to be quite good.

In spite of this initial success the entire method of
successive approximations was abandoned for the rea-
sons mentioned above. It appears, however, that it
might furnish an interesting and perhaps profitable
field of study for the mathematician.

10. THE INNER SOLUTION

It has already been pointed out that the approximate
form of the boundary-layer equation which leads to the
outer solution discussed above is exact at the outer
edge of the boundary layer, but is in general far from
correct at the wall. A natural procedure is therefore
to look for another approximation to the exact equa-
tion which shall be correct.at the wall but possibly
inaccurate far from the wall. The solution of this
equation might naturally be called the “inner solu-
tion”, and the final method of approximating to the
exact and complete problem would then be to join the
outer and inner solutions together in some way.

A first approximation to this inner solution is very
easily obtained, but it is convenient to first change the
notation slightly in setting up the equation. Weintro-
duce a new independent variable defined by

2

2
t=2zy— z=1—;— where zo=g—- (22)

Then the basic differential equation (4) may be written

in the form
ﬂ_ _420,'\/2—0<1 1 ag‘
NG

oy 2/ D¢

1 cf. for example, Goursat’s “ Cours d’Analyse I1T,” ch, XXIX.

23)
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where
4 _QZ)
de\ 2 :
Using a subscript ( ); to denote the inner solution, we
approximate to (23) by writing

A GG B
Ale) =424

*
where (%) is a function of ¢, ¥, ¢; chosen in such a

way that (24) approaches (23) as the distance from the
wall goes to zero, i.e., as y—0.

o¢

Since at the wall we have ;—— 0, it appears that

to get a first approximation for our inner solution we
. ,

may take (g—i) =(. This solution, denoted by ¢; will

then be exact at the wall. Discussing this simple

approximation, we have

62.(. O A(‘P)
o o
We consider this as an ordinary differential equation
and integrate for p=constant. It is convenient to
introduce temporarily the auxiliary dependent variable

(25)

W= 0% ") and to consider {; as independent variable.

Then we obtain at once
1dw_ A
2dem 1/5
or integrating,
W) —W(0) =44 .

Now writing
Boe) =W =(5),_~(55),

and returning to the original variables ¢; and ¥,

S B+ 44T

A little calculation gives finally, assuming

i (P=0)=0.
V=gl Bo— (Be— 24T )BT 2AT]. (26)

If B0, we may invert this expression obtaining the
following expansion about y=0:

4 A
g‘il'—"Bl‘P—*--g-"[B_l

Y32+ (B:=0). (27)

.....

At the separation point (g—;;) =0 and hence B,
y=0

=0. We have exactly, therefore:

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

At separation poiﬁt: (28)

.B1=0

3 ’\/__ g—i13/4

fil = (_g_) A2I3 ll04/3

The different analytical form for ¢, at and away
from the separation point for y—0 is very interesting.
In view of the exactness of the equation for {y, at
¢ =0, any further approximations for {; must exhibit
the same behavior near ¥ =0 as is shown in (27) and
(28).

11. THE IMPROVED INNER SOLUTION AND ITS
JOINING TO THE OUTER SOLUTION

In developing further approximations to the inner
solution, we must be guided by the procedure which
will be used in joining the two solutions together. A
discussion of this procedure requires first a brief re-
considering of the approximate outer solution. The
exact and approximate outer equations are, respec-
tively:

0z 10%

Smiop(15) me

The two equations are identical at the outer edge of
the boundary layer where z=0 and would at first
glance appear to become more and more different as
the wall is approached, since z in general increases
continuously from 0 to z,. Fortunately, however, the

az,., 1 9%z,

2
two equations are again identical when %‘p—i=0, ie.,

at an inflection point of any z(¢) profile. TFor the
Blasius case of no pressure drop this inflection point
occurs just at the wall. For external flows with pres-
sure drop in the direction of U it is almost certain
that there is no inflection point at all. TFor flows with
pressure increase in going downstream the inflection
point moves out from the wall so that the z(y) profiles
develop an S-shape. In view of the nature of the
two equations, it therefore appears that the outer
solution furnishes, in most cases, a satisfactory ap-
proximation to the exact solution for the region be-
tween the outer edge of the boundary layer and the
inflection points of the z(¥) profiles. Proceeding from
these inflection points to the wall the accuracy of the
outer solution apparently becomes rapidly more and
more unsatisfactory. The procedure adopted in view
of this situation is the following: For flows with pres-
sure decrease or constant pressure the outer solution
is considered as a satisfactory approximation to the
exact solution. For flows with pressure increase the
outer solution is used from the outside of the boundary
layer to the curve connecting the inflection points of
the outer solution z.(¢) profiles. TFor the region be-
tween this curve and the wall the partial differential
equation is replaced by a family of ordinary differ-
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ential equations in ¥. The inner solution is composed
of the functions ¢,(y) obtained by the solution of
these equations and joined to the appropriate {.(y¥)
profile of the outer solution for each value of ¢. In
the following discussion of the inner solution and its
joining to the outer solution, we are therefore con-
sidering only flows with pressure increase in the direc-
tion of the external flow.

In joining the two solutions it seems necessary to

require that Y 51/2 be continuous, in view of the major

importance of this second derivative in the equations.
We must, therefore, join the two solutions in such a
way that the inflection points of the outer solution
coincide with inflection points of the inner solution.
Referring to equation (25), we see that for a given

value of o, ¢ has always the same sign for all

3#/
values of . In other words, the first approximate
inner solution has no inflection points and is, therefore,
quite useless for our present purpose. Some 15 differ-
ent procedures for finding a satisfactory inner solu-
tion and joining it to the outer one were investigated
in all, the more important of which will be briefly
discussed below.

It is convenient to call the point at which the inner
and outer solutions are joined the ““joining point’ and
to use a subscript § to denote quantities taken at this
point. It is also convenient to introduce an alterna-

tive independent variable g=—j—_-; and to consider ¢
14

and z sometimes as functions of ¢ and £ rather than
of ¢ and ¢. The variable £ appears continually
throughout the entire analysis and seems to be a natural
physical variable of the boundary-layer problem. Its

close relationship to the wvariable T which gives

the Blasius similarity law is quite evident. It should
be noted that inflection points in the ¢, ¢ plane
correspond identically to inflection points in the ¢, £
plane, so that our preceding discussion is valid in
either plane.

The first procedure investigated was an iteration one,

*
ie., (?) was taken from the first approximation
ag' i

08 3o This had the effect of moving the inflection

point in from infinity, but in the cases considered still
gave {1, >2, i.e., the inflection point still lay outside
of the boundary layer. This method was, therefore,
abandoned and in all the succeeding investigations
the inflection or joining point was forced to occur in
the neighborhood of the wall through the choice of

(m‘ ) At the wall we must have <b§> =( since

¢(¢=0)=0 for all ¢’s, while at the joining point we
591—35——36
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. 1 /708\*

see from equation (24) that —{<==) =1. Hence
2'\ Op i

*
a series of simple assumptions for (g—i) which sat-

isfied these two conditions was discussed. The various
attempts will be more clear if we restate the immediate
problem of the inner solution a little more explicitly.
We have a second order differential equation (24) for
¢1 as function of ¢ (or £), ¢ being considered constant.
We should like to impose the following boundary con-
ditions on the solution of this equation:
At the wall, y=0, ¢;=0.
At the joining point, ¢ =14y, (determined
from the outer solution).

2t _ (%,
§' g‘wj and ¢ 641 x

In addition, we must choose (%;) so that at the joining

2
point (%
tions for a second—order differential equation and must,
therefore, abandon one. The condition at the wall is
of essential importance, especially for the separation
phenomenon, and must be retained. Of the three re-
maining possibilities two have been discussed. First,
the condition {;;={,, was abandoned. Second, the
joining point was considered to be determined by the
condition that {;,={., and the value of ¥, was not
requlred to be the same as that for the outer solution,
i.e., in general, l/lij¢ Yo, The discarding of the cond1—

tion on b{’: was not considered, largely because the

=0. We have here three boundary condi-

second method was felt to give satisfactory results.
*

When the first method was used (%E) was assumed to

_y

7

4
two assumptions with regard to (%) were consid-

d¢ AN _ e .
ered: _(b > Ep) —\/g‘, The first is

the more natuml but it unfortunately leads to the
appearance of e]]iptic integrals which make the suc-
ceeding calculations very awkward. The second is very
fortunate in that the inner solution is readily obtained
in explicit form and involving only elementary func-
tions. _

In order to discuss these various alternatives a fam-
ily of simple external flows of the form U?=0,+b, ¢
was used. Inaccuracies in the different procedures
would be expected to reveal themselves most strikingly
at the separation point. Accordingly, the separation
point location and the corresponding velocity profile
were calculated for all three of the cases mentioned in
the preceding paragraph, and all three procedures were

to be given by i, oy For the second method
2’ \ Op
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found to give very similar results. The calculation of
separation point locations followed methods analogous
to that described in the next section. In view of this
lack of sensitivity of the separation point character-
istics to variations in the method of joining, the second
assumption of the second method was adopted, i.e.

i Yy 1( £y \/

Before giving the analysis and results for this pro-
cedure we shall briefly outline the essential elements of
the method finally adopted. For a given value of ¢

we determine {.,, (g—{‘b" and ¢, from the outer solu-
i

FAY

$

7

[N 0r/gln far <, ¢,

(1

e $:
FIGURE 4.—Method of joining inner and outer solutions to obtain the complete
joined solution.

2
tion, using the condition g {0 0. We then assume

( ) \/ $i and determine the inner solution
using the boundary conditions

Ofw

¢=0 at y=0, (af‘ =(3y), 86 &=

{wj—ff

We then determine ¢;; correspondingto {; and definea
quantity e by the relation

‘Jbij: Ebmj‘*' —\/g_oe(ga) or Eij=£mj+ €.

For {<¢; we use the inner solution as a function of
o and &;.  For ¢>¢; we use the outer solution, but for
a given value of ¢, we use, not £, or . but & +e or
Yo+ey/p. Our final approximate solution then has
the form indicated schematically in figure 4 by the
solid line. This procedure implies that the outer
solution is one which does not correspond to the
actual wall but to a fictitious one displaced out into
the fluid by an amount determined by e This dis-

placement is & function of the distance downstream
from the stagnation point, and in general, has its
largest value at the separation point. The error
introduced through the use of this displaced outer
solution will naturally depend on the relative size of ¢,
increasing as e increases. In the 13 velocity profiles
U?(p) which have been investigated using this proce-
dure the value of & (corresponding to the boundary-
layer thickness) at the separation point always lay
between 1.5 and 2.0 while the largest value of ¢ was
0.026. Hence the displacement was at most of the
order of 1.5 percent of the width of the boundary-
layer profile. It is, therefore, believed that the error
introduced by the displacement of the origin of the
outer solution is of mnegligible importance. In this
connection one further procedure which was investi-
gated should be mentioned. In this a slightly altered
value of z, was taken for the outer solution and the
alteration was taken to be such that e vanished.” This
implies that a solution was obtained for a slightly
distorted external potential flow, but the solution was
logically consistent. The results with this method
were practically indistinguishable from those obtained
with the e procedure, so that this more complex
method was not carried further.

12. ANALYSIS AND GENERAL RESULTS FOR THE FINAL
JOINED SOLUTION

We first derive the e*cpression for the inner solution

finally used. Substituting —7 2 (gi) \/ 2% in equa-~
tion (24), we have

22:;; : 1) < ‘/

Integrating in the same manner as before, we obtain:

=\/B12+4A45——

where, as before,

Bz_ ag‘i

0¥/ g0

Integrating -once again and introducing the bound-
ary condition {;(¢=0)=0, we have

Y= [BI \/Bl +44-/t— w/_§’ _I

§1

1—4/28

\/ Zpp ] sin~ 1 —sin™! 7]
’ \/ 143 14+ B0
2445, 2444

It is convenient to rewrite these expressions in terms
of the variable £. Replacing A by its original expres-
sion from (24) a little calculation gives for the final
inner solution expressions:
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I:—-—~

si— "/9

Q 3“[ . ‘/5_9
_%¢ B ﬂB+2 7
$i

l_g—i]
iT5

1
- sin"ﬁ —sin~

¢ 29)
az —zp ¢
__‘2:2_\/5 Z:ﬂ” $i B24+2

2.

0 Tz _—4z'e ft) <1 > _¥
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where
_ &
Oy /u=o (
0Y/y=0 (30)

- 82 Zo'Jg‘l

We obtain the following expressions, giving the inner
solution joining-point characteristics, by putting ¢,=¢;

in (29): .
1 P
fy= w@\/— Z(:) ®

1
Mg ) .
+sm 41+BJ

{1
<b ) _2’\/—'J 29 ({’(ff /1+BZ
O

To join to the outer solution for any given value of ¢,

)Bm

B

afe

we first determine Sw,g‘ wmd( > from the outer

Of

o
62
solution (17) or (19) using the relation <_b£—229>1

0%z, 0%z, ©
b§2> (b\;) =0, We thenrequlre i;) i—o)

—_ g.! _ﬁ - _2‘_‘ 3
=2\t /, 5/, The second equation of (31)

then determines B and this, with the préceding equa-
tion, gives £&,. TFinally, we obtain e from

e=£i_1_£wj B (32)
We now have the complete and joined outer and inner
solutions for a given ¢. The analysis may then be
repeated for as many values of ¢ as are desired. The
fact that the inner solution is given in the form £=£(¢,),

and that inversion to ¢,(¢) is very difficult, is of no-

practical importance, since what we finally want is the
velocity profile w=wu(y) for an arbitrary value of z, i.e.,
of ¢. TFor considering only the inner solution for the
moment, we may write the basic relations (9) in the

form . 1/_
“ U\/Zo’ " TU+R IE’ L o [t
2
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For a given ¢, {; is given implicitly as a function of ‘¢

in (29). Transforming the integral in It so that $1 g is

$
the variable of integration, the quadrature can be
analytically carried out and we readily obtain

Ii= .J Q’“ PR SR ;]
f 2o SR B 1+B°

This equation is easily inverted, so that, using the
preceding expressions, we obtain +/t;=£(y) or u,=f()
explicitly, as has been done in (33) below.

In collecting the most important expressions for the
final, complete solution, it is desirable to include the
expression for the so-called “boundary-layer Reynolds
Number” R;. If U; is the actual (dimensional)
potential velocity just outside of the boundary layer,

A
s

Zy -,._/_. ——————————

N

S
/

ZS:

-

|
i
€
fx_’,‘ w5 fs E

F1GURE 5.—Alternative picture of the method of joining inner and outer solutions.

2 I S,

and & is the corresponding actual boundary-layer
thickness, then R; is defined by

U16 1

14

Ra=

In presenting the final results it is also convenient to
use a slightly different picture from that discussed in
connection with figure 4. For conceptual purposes
the displaced origin for the outer solution seems most
suitable to the authors, since it gives a continuous final
solution in the ¢(&) or ¢(¢) plane. The notation for
the corresponding expressions giving results in the
u(y) plane is, however, a little complicated. The
alternative picture indicated in figure 5 gives identical
results to that of figure 4 but leads to simpler expres-
sions for % and y. In figure 5 we have made the
origins for ¢, and {. coincide so that we have only one
£ variable instead of the two used formerly (£; and
£.,). At the joining point {;, there is now a "discon-
tinuity of magnitude e between the values of # for the



554 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

inner and outer solutions (£,;—£.,;=¢). The complete
solution is obtained by following the inner solution
curve from the origin to {; and the outer from {, to z,.
(cf. the solid curve.) The solution u(y) is then con-
tinuous although ¢ (£) is discontinuous, as is clear from
the formulas given just below.

The essential results of the entire foregoing analysis
may be summarized as follows: For any given value
of © between the stagnation point origin and the

separation point:
\/ & then

yw/Rw/——'Z ,
w |

for (=g, t.e., u=Suyt
So ) and y*
2

L%[l-msm
—_ @ N S —2ip ¢ dt
—\/Usm TRtV ff\/;_

NG

Writing y*

d

for {=¢y, 1€, u=u;t %= )

y=39, i.e., ¥ =8* for £=§; where
fee—£)=0.99
0

Ra = —\/RJEZZZ, 8%

At the separation point, B=0, we have the following
simplifications:

(33a)

U Y= +‘/_\/ o ‘pff \/s“
T

It will be noticed that the boundary-layer thickness
y =23 has been defined in accordance with (21) as that

value of ¢ for which g_"’—0.99, ie., %=0.995. This

numerical value was chosen because of the excellent
agreement it gave with the Blasius expression for § in
the case of flow with constant pressure. It will also
be noticed that the final formulation given above
completely eliminates the necessity of calculating
§,0re

Before leaving this general analysis of the boundary-
layer problem, the method of determining the separa-
tion point should be indicated. It would, of course,
be possible to determine the value of ¢, giving this
point by trial and error, using the procedure already
outlined in this section, until a value of ¢ was found

for which B2—-<a ) =0. The problem can, how-

®

ever, be much more easily solved directly by the follow-
ing method. Since B*=0, we have from (31) for the
separation point:

m

: =2:i\/_'zo__ _;_,)w
T2V —ae\z

() oy

From the outside solution, using the condition that

2
0 Z“’) =0, we obtain

o8 /;
o
0=
$o\ _ 2 _
(%), -1, <—"ago>1—f2 (@),

where f, and f, are known functions of ¢. We now
employ the conditions:

) -9 (32) - (2),

which, substituted into the second equation of (34), give
V — zo ? —£,(v), where f; is also a known function of ¢.
0

But 2z and z,” are also given functions of ¢. We there-
fore have an equation containing only ¢ whose solution
obviously gives ¢y, i.e., the value of ¢ at the separation
point. In other words, we determine the separation
point position ¢, by solving an equation of the form

F(p:) =0.

The procedure is entirely similar to that discussed
earlier in connection with the use of the unmodified
outer solution alone. The calculation of the velocity
profile, ete., is carried out in exactly the same manner
as was described above in this section for an arbitrary
value of ¢.

B=0 (34)

13. APPLICATION TO THE BOUNDARY LAYER FOR A
“ SINGLE-ROOF PROFILE”’

In this section we consider the application of the
above analysis to the simplest case of external flow with
pressure increase given by U?=g,+ Bio. We call this
U*(p) profile a “‘single-roof profile”’” for obvious reasons,
For any actual flow around a solid body we have an
upstream stagnation point, i.e., U*=0 at ¢=0. In
order to give our single-roof profile any physical sig-
nificance we must, therefore, consider it as a limiting
case of a “double-roof profile” defined by

U2=b1<p for OSgo'Sgal
U=y + Bip for o=0¢y.

The limiting single-roof profile is obtained by letting
0,—>0, by—>c0, while byo,=Us% (cf. fig. 6.) The final
velocity profile may then be written:
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U= U= Be,

and may be considered as a first and crude approxima-
tion to the flow over the upper surface of an airfoil.
To fix ideas we consider this velocity profile as such
an approximation. At the trailing edge of an airfoil
the velocity has very nearly the value of the undis-
turbed velocity far from the airfoil. If this be taken
as the basic velocity used in defining the Reynolds
Number of the problem, then we may take U (trailing
edge)=1 in accordance with (3). Once again to fix
ideas we may consider our airfoil only in the normal
range of angles of attack, so that the position of the
forward stagnation point varies very little and may
be assumed to remain fixed. If we then take the
distance along the upper surface from stagnation point

Double roof profile

1
Single
roof profile

]"]l""T ----------------

1
[ ..
! \_.Trailing
| <
1 I” edge
1 |
1 | >
0 2 7
Fi1GURE 6,—The single-roof potential veloeity profile as the limiting case of a double-

roof profile.

to trailing edge as the characteristic length of the
problem, the dimensionless coordinate z along the
surface will have values between zero at the stagnation
point and unity at the trailing edge. From the rela-
tion between 2 and ¢ given in (9), it is then very simple

to deduce the function U(x) from U?*(¢). The two
alternative expressions giving U are finally
220=U2= U12_2(U1—1)g0 35
U=, —(U— 1)z (85)

The corresponding profiles are plotted in figure 7.

In obtaining the outer solution it appears that the
results are identical whether we substitute (35) directly
into (14) or use the double-roof profile with (17) and
then pass to the limit ¢,—0. In either case, we obtain:

2o = Urgo(&) —2(U1— D)9 () + 1(E) ]

= Ugo®) —2(Ti~ D@ o (86)
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For the separation criterion, on the other hand, we
must use the double-roof profile and the limiting proc-

ess. If we carry this out using (18), we easily get
# " E0, ) )

where the subseript w is used to indicate the fact that
the value of ¢ is obtained from the separation criterion

U Uz
Ula

&

Traifing
gdge
i , .

VRS 7

Trailing

FIGURE 7.—The final single-roof profile as function of z and ¢.

for the outer solution only. The functions gy(%), ¢:(%),
and A (£) are plotted in figure 8.
To carry out the joining procedure with the inner

. 2 . .
solution, we need g_;_, =1 —z—“’; -and in the expression for
0 0

.50

N
Sk

.10 A\

N
]

o o
£
-4
= 5 1.0 1.5 20 2.5

FIGURE 8.—The universal functions go; g1, and hy.

this quantity it appears.convenient to replace ¢ or U?
by a new variable denoting position along the surface.
We, therefore, write

LU 1 ~
TP T U—1 * (38)
1=27~ s
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and obtain at once from (35) and (36)

%‘;=1—2h1(s)+2agl(s> (39)

$o
ore
From the condition ngo (£=£&.;) =0, we geb a= a(t;).

Since £.; is always small, the easiest method which has
been discovered for carrying out this calculation in
general is to expand the functions g,(£) as power series
about £=0, using the expansion for the probability
integral given in section 8. In the present case it was
found possible to neglect terms of degree higher than

5 in ¢ in the expression for %, and this is probably also
[

true in general. Having o= a(t.;), it is easy to cal-

$o
0=
culate (i‘ > and ( E) from (39) as functions of &.,.

Turning now to the inner solution, so as to determine
the sepacation point, we obtain from (35) and (38):

14
L 2

—ﬂ=a—1
29

so that (34) becomes

(%) -2y

Now replacing (gi) : by (%)4 as obtained in the last
J

(40)

$a
ot
paragraph, we have (bE) ={(£,;), since a=a(t;).

a& f i
Then D_ZEO DE =Fi(t;) (say), which may be

caleulated snd plotted. In accordance with the con-
siderations presented at the end of the preceding sec-
tion, the value of &.; for which Fj(£,;) vanishes, is that
corresponding to the separation point. The separa-

tion point values of &« and %’- are given by this value of
0

£o;. (£;)s is then determined using (34) and ¢, from (32).
The numerical values obtained in this way for the
‘*single roof "’ profile are:

ay=1.241, (ff

=0.246, (£.,),=0.262, ¢,=0.026 (41)

To get a picture of the complete boundary-layer be-
havior, we must consider other values of « between 1
and 1.241, corresponding to points along the surface
between the stagnation and separation points. For
such intermediate points the procedure is the following:
We assume & definite value of « and this, in view of

the calculations outlined above, immediately gives
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fo
Q 20 . . . .
Ewlyzo;a,nd <_35 ), Substituting the last two into

the second expression of (31), remembering that

afﬁ a-ﬁ
a—?’ ;= D—ZEO p e obtain B% Although they are

not needed for the determination of boundary-layer
velocity profiles, we could then calculate £, and hence

e from the first equation of (31).

The final velocity profiles for any of the values of «
considered are now determined from (33) or (33a).
The integral occurring in these expressions will usually
have to be evaluated by an integraph or some other
graphical or tabular means. The complete calcula-
tions have been carried out for a series of three values
of «. In order to visualize the results and to present
them in & form independent of the magnitude of U,

they are given in terms of —g.—: y* and z* where
1

U,—
'171'=U_‘/—’y *=yJBU,—1,2% =2 lU

The velocity profiles and boundary-layer thickness in
terms of these variables are indicated in figure 9 by the
solid curves. The joining points are shown by the oval
symbols with the 7. It is very interesting that in the
u, y diagram the inner solution is so large a fraction of
the complete solution, while in a ¢, £ plane the outer
solution goes nearly to the wall. It is just the small
values of £ at the joining point which make it seem that
the approximation of our joined solution to an exact
solution of the boundary-layer equations is satisfactory.
For the sake of comparison the analogous calculations
have also been carried out using the outer solution only.
The results are given by the dashed curves in figure 9.
At the separation point as determined from the outer
solution (cf. equation (37) the boundary-layer thick-
ness becomes logarithmically infinite since $a i pro-

2o
portional to £ near £=0. This seems to be a general
result and indicates the unsuitability of the outer
solution alone for the discussion of separation-point
characteristics. On the other hand, the outer solution
is very close to the joined solution for the first profile
(zoing downstream from the stagnation point), and is
not very different for the second profile. It would
appear, therefore, that the outer solution alone prob-
ably represents a fairly satisfactory approximation in
general, as long as the immediate neighborhood of 2
separation point is not approached.

For the single-roof velocity distribution discussed in
this section, the Pohlhausen method of approximate
integration of the boundary-layer equations also leads
to simple expressions. In deriving these expressions
it is again necessary to consider the single-roof profile

=1—'7—-— (42)
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as a limiting case of a double-roof profile, but this
limiting process is very easily carried out, and leads to
the following simple form of the Pohlhausen equations:
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the outer solution is known to be inexact near a sep-
aration point, this agreement serves to cast some doubt
on the Pohlhausen solution in such a region.

.0
4 U=.849 U; ! / To'co
Complete joired solution H 7 ar
— — — Quter solution only e = £5¢*=0.292 —]
------ = - Pohlhausen solution - [
// - /E
3.0 U=.898 U|—1= > :
LT —T ]
- 1 !
- P I
Y U=.930 U, 2 '
el 27 | _ ] 11
= o T 1= I
i ///,4__ 1 ;
20 U-.9625 Ul | ; 7
- — - I — ] ll
e -2 1 @ / II/
o" | - eEm u |/ / /
1.0 P % / _Ll/, / /l
Az A Lof L /
Y v / /|  Mofe change
7 7 /' in scole
0 .02 .04 .« .06 08 .10 12 14 16 29 30
Separation point/ Seporation point, _.- Seporation pomni-’
complete solution Pohlhausen solution outer solution
F1GURE 9.—Velocity profiles and boundary-layer thickness for the single-roof potential velocity distribution.
U, _ The expressions for E;, as calculated by the three
log, U,— (U,—1) w—IOg"‘/_';_ I methods are:
0 —213.124+5.769+ 7 .. .
L= \ 7957.6 7 1336397 — 37007 — 087 dy 43) R;, (joined solution)=2.18 == 1/U1—1 R
w_ 124Ny ) ) 4= '1/*‘ s ) y*)" R;, (outer solution) = o (44)
U~ 5% 2 6 \oF
U6 6 R;, (Pohlhausen) =2.93 —= 1/R
§¥=+—N\ -\/ Ul
A 14, THE BOUNDARY LAYER FOR A “DOUBLE-ROOF
Uz PROFILE
/
/ The results of the last section are particularly sim-
C~~ol/ 2 ple but the single-roof profile is too restricted to serve
| (64 & as a satisfactory approximation to many potential
A 2, velocity distributions. The double-roof profile, in-
,5/’ | volving one more free parameter, is considerably more
! flexible, and may have a much wider field of applica-
d bility. In this section, therefore, the separation-point
! characteristics of a double-roof profile are investigated.
@ 2 The notation adopted is defined in the following

FIGURE 10.—The double-roof profile.

The function Ix(A\) may be evaluated analytically or
more simply with an integraph. For the separation
point A= —12 which gives o,=1.404. Boundary-layer
profiles have been calculated from (43) for this value
of a as well as for the two values considered above
with our joined and outer solutions. The results are
plotted in figure 9 as dotted curves. The agreement
with our solutions is quite good for the first two pro-
files, and at the third profile the outer and Pohlhausen
solutions are in remarkably good agreement. Since

equations, and illustrated graphically in figure 10.

e

We are primarily interested in separation phenom-
ena and will therefore restrict our considerations to
the region ¢ >¢;, in which region only can separation
occur. From equations (16) and (19) we obtain for
the outer solution corresponding to the flow of figure
10:

For 0<o=<<¢y, U*=bo

U= b+ B)eu— “9)

For ¢1=<<o,

2y(ey V) ={0+ B er— Botu™+bo(ha—h*),



558 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

where h1=h1<4l;>: h1*=hl<1/¢—‘i9:>: and by(z) is de-

fined in (14), (19), and plotted in figure 8. It is

convenient to replace z. by g‘ 2 in the following, where
[24 W Uz 1
%‘0=1"Z—°§ Z20=75 = {(b+13)€91 Bo}

fo s 000 74
We get at once *2=1—2{h;*+ 5 (hy—~™) (46)

2 U

As ahove, we write ——=—
7
so that by=hy(§), h* =Py <£\/ )
— ¢

Cons1der1ng fo as & function of ¢, £ and restricting our

attention for the moment to variation with ¢, it ap-

pears that there are in (46) two variables: bﬁﬁ and
©

Y1
tween these two variables is very easy to deduce. For

However, the relation which must exist be-

U_G+Pe—Be_o_Be—ar
be be e b o
LU _e—a é)
be o <1+b
or
B
o 1%
o~ , U?
1750

Equation (46) may therefore be rewritten:

b}

Q=1_z{h1*+ﬂ(h,—hx*)}

/1+7'
=h(®), b* hl< £\ 1——> @7)

_be _B ¥
where & 72T a’ndg_@

The variable @, defining position along the ¢ axis,
and the parameter r, giving the ratio of the slopes of
the two portions of the double-foof profile, recur con-
tinually throughout the succeeding analysis.

The first problem is now to investigate the joining
of the above outer solution with the inner solution so
as to determine the location of the separation point.
Equation (34) gives, for the inner solution at the
separation joining point

2 $i
where a—;" =0

0.404 /¢,
5 w/ré‘s Zo)

N7
<T£> =2. 8284ras<§ ’)

. 7, Bo —
since ‘/_M= %= Jrd

20

(48)

To join the two solutions, we must now require that

2§w rw f{
052 _0 and put {o,=§y={y, E DE

In view of the fact that & is small, the most satlsfac-
tory method which has been found for proceeding with
this calculation is to use the power series expanion of
hy(x) about z=0. Using the expansion which is given
in section 8 for the probability integral occurring in
h1, the espansion is found to be
hy(2)=0.5000—1.1284 z+2>—0.3761 2+ . . . ..

The next term in the series is of degree 5 in z and its
neglect has been found to cause no perceptible errors
in the results, so that for purposes of calculation the
series is cut off after the term in . Substituting this

o
expression for &, (x) in (47) and putting <32 ) =0, we
Y
obtain £,,=f;(¢, ). This in turn leads to expressions
of the form

o
Q’) =1,(¢, ) and <025> =f3(, )
Zo/; _D—E J

At the separation point ¢=49,. Using these relalions
and the second equation of (48), the conditions

{w (o]
oy =t and (?z_o) _ (___)
ot /, ot/

lead to a relation of the form &, =d,(r).
From equations (47) and (48) we now determine the

separation point values of gi: £ojy and e=£,,—£&,, as
0

functions of the parameter ». The numerical results
are indicated by the curves of figure 11.

Before proceeding to the determination of the actual
position of the separation point, let us consider for a
moment the value of Rs;= the boundary layer

Reynolds Number at the separation point. From
equations (33) and (33a) thisis given by
2 U;" 5,
=—(§’ +Mf r (49)
N “(s, 2,
2_0 &= fa) =0.99.
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In carrying out the numerical calculations the integral
in §* was evaluated with a Coradi integraph for a
series of values of &, i.e., a series of values of .

The essential results of the analysis to this point may
now be presented in the form &,=4,() and §%=6%();
the results are therefore expressed in terms of the
single parameter 7. In proceeding to the final results
(separation-point location and value of Rs) it is
necessary to introduce one more parameter which we
take to be ¢;. From the original relation U2?= (b+ 8) ¢,
— By, and from the definition of ¢ it follows immedi-
ately that

_ldr o UP__l4r
CTI 0" B T e o) P

25 .05

.03 ¢

eI ==

N
20

~ 24

> 22
ey
i fwj
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\
\

.24
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— = 2
\ I 3&
5‘/.20 Z
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™M 21

.20
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¥iourg 11.—Separation, joining-point characteristics for the double-roof profile,

If we therefore write

147
Os=1775,% (50)
At \/ 20 +7) 55
r(l+rds) s
where 6; and A;* are functions of r only, then
= @10,
R5s (51)

T~ Vet

The functions 8, and A;* are plotted in figure 12 as
B

functions of r=y Figure 12 and equations (51) give the

position of the separation point (¢s;) and the corre-

R;,
sponding value of —= ‘/— : for any double-roof profile, in

R
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terms of the two parameters r=b§and ¢1. The extreme

simplicity with which all of the major separation-point
characteristics may be determined, for the rather
general class of potential flows considered, is quite re-
markable.!

Two rather interesting results of the above analysis
are worthy of special mention. First the small magni-
tude of the dependence of §;* on r is illustrated by the
curve of 5;* vs. » which is included in figure 12. In
view of the definition of §* from equation (33)

8:* =08,1/R+/B,

where §; is the actual dimensionless boundary-layer
thickness, this mnearly constant value of §,%*=2.5
means that we have

pre 2B L
VEE
24 I
20 \ 3.2
/6 \ \ 2.8
s \ A\ s ——i— 8s*
beeleccboma === e e e e
/2 J 24
Ag* \
o~ A
8 — 20
\ \\\
4
~ % |
o .04 .08 12 16 .20 .24
r
FIGURE 12.—General functions giving separation-point characteristics for the double-
roof profile,

In other words, for a given Reynolds Number B, the
thickness of the boundary layer at the separation point
is approximately inversely proportional to the slope of
the second portion of the U?(p) (or U (z)) profile, and
independent of the maximum value of U or of the man-
ner in which it is reached, i.e., independent of b or ¢,.
The second interesting result lies in the type of simi-

1 Since 8, behaves approximately like%as r approaches zero, it would appear that

the function rg, might have some physical interest. Actually it is easy to show that
U,
U’ﬁ
the limiting case r=0, which corresponds to the single-roof profile, wi
Us
Uit
a value of 0.880 at r=0.25. In other words, as the distance along the boundary from
the stagnation point to the point of maximum potential velocity increases, the po-
tential velocity at which separation occurs, approaches more and more closely to the
maximum velocity. This is exactly the behavior which simple physical considera
tions would suggest.

=1—r (8:~1) and this function does have an obvious physical significance. For
we have found

——1—=0 806 (cf. equation 41). As r increases g, increases practically linearly to
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larity law which is found to hold for a family of double-
roof profiles. For, if we consider a family of such
profiles, all of which have the same values of ¢; and of

R
r as in figure 13, then the values of ¢, and of _‘/—% are

identical for all the members of the family and for all
values of B. 'This may be considered as an extension
of the well-known general boundary-layer theorem
which states that for any given potential flow function
the position of the separation point along the surface z;,
and the value of % are both constant and independent
of R.

U.?

0 P
FIGURE 13.—Family of similar potential velocity distributions giving the same
values of ¢, and of B;,/+/E.

CONCLUSION

In the above sections we have developed a new
method for determining approximately the characteris-
tics of a laminar boundary layer. General formulas
and procedures have been explicitly given enabling the
direct application of the method to a rather general
class of external flow functions. Two examples are
considered in detail and represent approximations to
the type of flow which takes place over the upper sur-
face of an airfoil. In most practical cases the boundary
layer is turbulent over the main portion of the airfoil
section, but the characteristics of the small laminar
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tegion downstream from’ the stagnation point have a
great influence on the “transition phenomena’ which
determine the maximum lift at low and moderate
values of Reynolds’ Number. In the first example,
the calculation of the boundary layer starts from the
point where the potential velocity has its maximum
value, and the development of the boundary layer and
the location of the separation point are investigated in
their dependence on the rate at which the velocity de-
creases with the distance from the point of maximum
velocity. In the second example, the calculation starts
from the stagnation point and the effects of both the
region of increasing velocity and that of decreasing ve-
locity are taken into account. In the latter example,
the numerical calculations are restricted to the charac-
teristics of the boundary layer at the separation point.

The authors wish to express their indebtedness to
Dr. N. B. Moore for his kindness in checking the der-
ivations of the formulas of this paper.

GUGGENHEIM AERONAUTICS LABORATORY,
CavLtrorNIA InNsTITUTE OF TECHNOLOGY,
Pasapena, Cavir., May 22, 1934.
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